High Efficiency 240 Vac to Load Data Center Power Delivery Topologies and Control

arpa.e

Berkeley Power and Energy Center

Motivation and Application

ac line cycle \rightarrow unique challenges

with capacitor balancing

Challenges and Solutions

Converter will buck or boost depending on point in AC input line cycle $\begin{array}{c} & \text{OFF; } S_{\{1,2,3,4,5\}A} \text{ and} \\ S_{\{1,2,3,4,5\}B} \text{ modulate} \\ & \text{Boost: } S_{\{1,2,3,4,5\}A} \\ & \text{ON,} S_{\{1,2,3,4,5\}B} \text{ OFF; } S_L \\ & \text{and } S_H \text{modulate} \\ \end{array}$

Preliminary prototype tests buck functionality, so that the converter is off when $|V_{in}| < V_{out}$.

Buck: S_H ON, S_L

The converter relies on a stiff 48 V at the output (i.e. the UPS)

Hardware Prototype

Current Compensation to Improve Power Factor

Displacement current from C_{in} and C_{fly} leads to a phase shift in the input current, degrading the power factor. Our improved control algorithm compensates for this current to improve power factor [1].

Experimental Verification

References:

[1] E. Candan, A. Stillwell, N. Brooks, R. Abramson, J. Strydom, R. C. N. Pilawa-Podgurski, "A 6-level Flying Capacitor Multi-level Converter for Single Phase Buck-type Power Factor Correction," in *Proceedings of 2019 IEEE Applied Power Electronics Conference and Exposition (APEC)*, March 2019.

Rose Abramson, Nathan Brooks Email: {rose_abamson, nathanbrooks}@berkeley.edu

